
JogAmp: 2D/3D & Multimedia across Devices

SIGGRAPH 2012 – Los Angeles Convention Center
August 7, 2012

Presented by: Sven Gothel
 Rami Santina
 Xerxes Ranby
 Wade Walker
 Julien Gouesse

What is JogAmp?

JogAmp
 JOGL – JOCL – JOAL ...

About US
● Open & Vendor Independent
● BSD License
● Java Graphics, Audio, Media & Processing

 High Performance Bindings
● One Stop Community Platform

● SCM, Bugtracking, Build Server, Mailinglist/Forum,..
● Commercial Support
● http://jogamp.org

4096 bytes - Hartverdrahtet

● “Demoscene” production developed with JOGL
● Total executable size including music+visuals must be

<=4096 bytes (running length ~3 mins)
● Hartverdrahtet placed 1st at Revision 2012 (worlds

biggest demoscene event)
● 1:1 JOGL port ofc with sourcecode available:

http://copypastaresearch.tumblr.com/

http://copypastaresearch.tumblr.com/

Hartverdrahtet Visuals in a Nutshell

● Single fragment shader (fullscreen billboard)
● Zero polygons! Analytical estimated surface of multidimensional

IFS (fractal) volume
● Implements real-time raytracing (sphere-tracing based) with

global illumination features (e.g. ambient occlusion)
● Everything is generated per pixel on-the-fly (no precalc)
● Postprocessing pass finishes the look adding volumetric

lighting, noise and analog distortions
● Complete fragment shader including the raytracer, fractal,

camera pathes for 10 scenes and post-effects <1500 bytes

Sweet Home 3D / Java3D / Engines

NiftyGUI / Engines

Tuer / Ardor3D / Engines

JOGL Android Binding
● http://www.youtube.com/watch?v=VHxtVT4tWjM

http://www.youtube.com/watch?v=VHxtVT4tWjM

JOGL Embedded / R.-Pi

JOGL Embedded / ..

Cross Platform & Device: Use Case

 Visual Project Control

C3D Viewer

Model Visualization
Project Progress Update
4D Animation
Report Generation
Design Review

C3D Studio/Planner

Scenario Creation
Data Integration
...

http://c3d.com

C3D Mobile

BIM Model Visualization
just-in-time progress update
...

C3D - Visual Project Controls

C3D - Visual Project Controls

Sample usecase: Colorize by
Material Delivery Date,
highlighting
conflicts with plan...

Sample usecase: Visualize remaining
activities to mark testpack as done

C3D - Visual Project Controls

Sample Usage: Generate
Forman daily report and
task list

C3D Mobile: Instead of a
paper; generate a BIM
model for each forman

Why JogAmp on Java?
● Availability:

● Java, OpenGL, OpenCL, OpenAL, ..
● Multiple Vendors

– OpenJDK / IcedTea
– Oracle JDK
– IBM J9, ..
– PhoneME
– JamVM
– CacaoVM
– Dalvik

● x86, arm, ppc, sh4, ..
● GNU/Linux, Android, BSD, Mac OSX, Solaris/OpenIndiana, MS

Windows

Why JogAmp on Java?

● Managed Code
● Common API for

– Windowing
– GLDrawable / GLContext / GLSL
– I/O, Resource Handling (Texture, Code, ..)
– Rendering

● OpenGL Pipelining / Debugging / Trace
● Access to vast number of API / Middleware

JogAmp Continuity / Usage
● Usage http://jogamp.org

● Ardor3D
● C3D Studio http://c3d.com
● Elflight Engine
● Processing
● Gephi
● NASA Worldwind
● Java3D
● ...

http://jogamp.org/
http://c3d.com/

JogAmp Continuity / Maturity
● Maturity

● Version 1
– JSR-231

● Version 2
– OpenGL Profiles (ES 1+2, GL 2 + 3 + 4)
– Windowing Toolkit Abstraction
– Continuity Build/Test Server http://jogamp.org/chuck/
– 86 GlueGen + 278 JOGL Unit Tests

● Community Effort
● Ports [FreeBSD, ARM-HF, ..]
● Engine & Device Support
● Bug Entries, Test Cases & Fixes
● Code Reviews, Communication & General Help

http://jogamp.org/chuck/

JogAmp Deployment

● Preinstalled Bundles
● Modularized JARs
● Android APKs (modular, or all-in-one)
● Maven

● Online / Cached
● Automatic Native-JAR loading support
● Applet

– Classical
– JNLP

● Webstart (JNLP)

OpenGL Profiles

Native Surface

Windowing Toolkits

X11
(Unix)

GDI
(Windows)

Coco
(MacOSX)

Native Window

Android

EGL GLX WGL

GL

SWT
(SWT Canvas)

AWT
(AWT Canvas)

CGL

2011 – 2012 Enhancements
● GLMediaPlayer

● Uses OpenMAX on Android via ICS's MediaPlayer / libstagefright
● Uses libav/libffmpeg where available

– Missing [OpenAL] audio output
● Missing native implementation for Win32 / OSX

● Graph API for Curve & Text rendering via GPU
● Experimental UI

● Mobile Bindings (Android Intel/ARM, Linux ARM)
● Stability
● NEWT AWT / SWT Enhancement
● Documentation & Tutorials
● Higher Community Participation

NEWT

● Seamless integration w/ native Windowing System
● Multithreaded Access to Window Surface
● Lock free event handling
● Transparency, decoration and offscreen control
● Screen Mode API (fullscreen, resolution & rotation)
● X11, Win32, OSX, Android, OpenKD, .. implementation
● AWT and SWT integration via native re-parenting
● Desktop & Mobile

JOGL Android Binding
● Why?

● Short Development Cycles
● No device specific development
● Supports NEWT (Multitouch, Surface, ...)
● Same code compiled for all – almost Android agnostic.

● Deployment:
● adb install jogl.apk
● adb install myFancyapplication.apk
● Manual Daisy Chained ClassLoader, if desired.

Graph API
Resolution Independent
Shapes and Curves

Resolution Independent Curve Rendering API

● Based on Paper:
● R Santina, “Resolution Independent NURBS Curve

Rendering using Programmable Graphics Pipeline”,
presented in GraphiCon2011.

● NOT Loop/Blinn
● Patent Free
● Can Render Bezier, Bsplines, NURBS

Resolution Independent Curve Rendering API

● Why?
● Resolution Independent Text Rendering
● GPU based - Fast
● Seamless integration into Renderer (Scenegraph,...)
● New User Interface – across devices
● http://jogamp.org/deployment/jogamp-current/jogl-test-applets.html

● http://www.youtube.com/watch?v=Rqsu46ifMaw

http://jogamp.org/deployment/jogamp-current/jogl-test-applets.html
http://www.youtube.com/watch?v=Rqsu46ifMaw

JOGL Graph API
● Outline → OutlineShapes → GLRegion
● Renderer

● RegionRenderer
● TextRenderer (same as RegionRender)

– Helper methods for texts and fonts.

outline.addVertex(x, y, z, w, onCurve);
 ….
 outlineShape.addOutline(outline);
 outlineShape.addOutline(outline2);
 region = GLRegion.create(outlineShape, getRenderModes());
 region.render(gl, outlineShape,...);

JOGL Graph API

● Initializing:
● Read Outlines (from font, svg, application, ...)
● Modified Constrained Delaunay Triangulation
● Generate Region

● Rendering:
● VBO buffers
● Realtime manipulation – weights
● Transformation....

GPU based Resolution Independent UI

● Abstracted from the windowing toolkit
● Support multithreading
● Seamless integration into

● A native window (HUD)
● A custom Scenegraph (2D plane within 3D)

● High Quality rendering
● Super Fast

JOGL Graph.UI API

UIShape

UITextShape RIButton RILabel

UISceneController

Add/removeShape
 GetSelected
 getActiveUI
 ...

GLEventListener

MouseListener

UIGroup

UITextBox UITextArea ...

Graph.curve API

UI Requirements (WIP)

● Generic UI Rendering
● Rendering shall be performed using native

rendering TKs (JOGL, ..)
● Render primitives on an offscreen 2D plane to be

– integrated into a custom 3D scenegraph
– rendered as a HUD.

● Generic User Input
● Input events should be delegated from the custom

scenegraph to the UI input module.

Using JOGL and Eclipse RCP
in fluid dynamics research

Wade Walker
Austin, Texas

My research

 Computational fluid dynamics

 Computational elastodynamics

 Soliton formation and interaction

 Lots of coding (simulator is ~25KLOC)

 Animated graphical display

 Requires interaction with the graphics to
help invent and refine the algorithms

Just published in PLoS ONE

Research vs. production
code

 Exploratory code, not production code

 Constantly changing and trying new things

 Need flexibility and interactivity

 Java provides garbage collection

 Good for apps that are constantly being changed

 Eclipse RCP provides app framework

 Good for writing workbench-like GUI apps

 But how to render interactive graphics?

Why JOGL?

 Easy hardware-accelerated graphics
in Java

 Cross-platform (my simulator runs
unaltered on Windows, Mac, and
Linux)

 Runs fast, gives good interactivity

 Supported by great guys

Demo simulator

JOGL on Embedded Devices

● Development Env:
● Beagleboard / Pandaboard w/ ARM7l / PowerVR

– Linux
– Android

● Platform based Unit tests
● Continuous Integration with auto-builds.
● Cross platform compilation/building
● Utilizing HW accelerated GL if available (EGL/ES)

JOGL Android Binding
● Details:

● Enhanced EGL binding
● Exposing GLES1 and GLES2 native profiles
● GL2ES1 and GL2ES2 profiles for Desktop/Mobile
● Using Android SDK/NDK

– Requires SDK Level 9, Android 2.3 Gingerbread for NIO Surface access
● Tested with:

– Pandaboard - PowerVR
– Samsung Galaxy S2 – Arm/Mali
– Samsung Galaxy S – PowerVR
– Samsung Tablet / ASUS TF2 – Tegra2
– ASUS TF3 - Tegra3

JOGL Android Binding

● Cross platform builds/tests with Linux host
● Scripts provided in source code repository
● NEWT Helper class (NewtActivity)

● Android Surface / NEWT Window mapping
● Android Input Event / NEWT translation

JogAmp's Ecosystem

● Middle and high level APIs
● Scenegraphs: Ardor3D, Java3D, JMonkeyEngine,

JReality, Aviatrix3D, 3DzzD, Avengina, Xith3D, MSG
● UI frameworks: FengGUI, Nifty GUI
● Visualization frameworks: LibGDX, Jzy3D, GLG2D,

Gephi, …
● Sound framework: Paul Lamb Sound Library

● Low level APIs & bindings
● JOGL, JOCL, JOAL, JInput for JogAmp

Nifty GUI

● UI framework
● Layout in XML or Java
● Some build-in widgets, effects and styles
● Focused on easing controls creation rather

than on providing tons of “standard” widgets

Java3D

● Object oriented and scenegraph based API
● Runs on top of JOGL
● Supports GLSL
● Spatial sound

Java3D

● Pros:
• Quite easy to learn
• Lots of tutorials and examples
• Importers for some mainstream formats
• Supports some “exotic” devices (multiple screen

projectors, gloves, headsets, …)

Java3D

● Cons:
• Very dependent on AWT (hard to port to NEWT)
• Bad reputation (only minor maintenance loads for

years, replaced by Prism in JavaFX)
• Performance concerns (memory, speed)
• Lacks lots of “common” features already

implemented in other popular engines

Ardor3D

● Java based retained mode 3D engine
● Runs on top of JOGL, SWT OpenGL binding…
● Supports GLSL
● Skeletal animation
● Supports Android
● Hardware accelerated UI
● Terrain system (with geometry and texture

clipmaps, level of details, ...)

Ardor3D

● Pros:
• Actively maintained
• Most reliable JOGL based renderers
• Abstracts rendering details but does not prevent you

from extending its features with or without renderer
independence

• Render delegates used for legacy OpenGL code
• Supports shaders (but still supports OpenGL 1.3)
• Both community and paid support

Ardor3D

● Cons:
• Focused on rendering (no sound, no physics, no

networking, no state machines)
• Lacks tutorials and very elaborated examples
• Lacks importers (only Collada, OBJ and MD2)
• Not yet any fully shader-based architecture

(planned in Ardor3D 2.0)
• No integrated game development environment
• No build-in spatial partitioning

T.U.E.R

● (Graphically rudimentary) first person shooter
● Project started in October 2006
● Has used 4 different 3D engines

● D3Caster (software rendering, raycasting)
● My own engine (JOGL, optimized for flat mazes)
● JMonkeyEngine 2 (with “my” custom JOGL

renderer)
● Ardor3D (with “my” JOGL 2 renderer)

● Focused on performance

T.U.E.R

● Relying on several third party libraries
● JOGL 2.0
● JOAL 1.1.3
● JOrbis
● Ardor3D 0.8
● Paul Lamb's Sound Library
● Fettle API (state machine framework)

T.U.E.R

● Main aspects about performance
● Careful threading

– Tick, update, render
– No interruption in rendering code
– No OpenGL context switch (when possible)

● Careful use of native resources
– Slicing of direct NIO buffers
– Destruction of useless direct NIO buffers

T.U.E.R

● Main aspects about performance
● Mesh optimization: merge of coplanar adjacent right

triangles whose all 2D texture coordinates are
canonical

● Spatial partitioning
– BSP trees (wip)
– cells and portals (wip, only working on “flat” mazes)

T.U.E.R

● JFPSM, WYSIWYG FPS editor
● 3D visualizer and editor
● Designed for rapid prototyping
● Focused on the editing of the game design by

combining existing models and the packaging rather
than on the modeling (Blender is better for that)

● Allows to create “simple” 3D meshes from 2D maps
and 3D patches

Q&A

● Whats Next?
● Why is neither Swing nor AWT recommended?
● What are the supported IDEs?

Thank You

Sven Gothel
Rami Santina

Julien Gouesse

Xerxes Ranby

Demoscene Passivist
Wade Walker

… all the many contributors & users

Mark RaynsfordMichael Bien

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58

