

0.5,0.5

0,0
1.0,0.0

0.5,0.5

0,0 1.0,0.0

0.5,-0.5

u

where D=3, n=2
Knot vector=[0 0 0 1 1 1]

Simple Quadratic, n=2

Generalization, n > 2

u

v
v = P(u)

P2
P0

P1

If interior is required, we change sign of P1v
→ P1(0.5,-0.5), wont affect the algorithm

Let A=(u,v)=(u,P(u))

Let B=(u,abs(v)) → current pixel fragment

if((v > 0 and ||P1B|| > ||P1A||)
 or (v < 0 and ||P1B|| < ||P1A||))
 color = c;

 c.alpha = func(P1B,P1A, sign(v))
else

kill

-0.5,0.5

-1.0,0.0
0.0,0.0

u

v

P0
P2

P1
None curved boundary
triangles Anti aliasing

Since P0P2 is a boundary edge
→ the boundary edge case can be defined
by signs different of the P2u.

Hence
if (u < 0)
 set color = c;
 Let P1A = (abs(u), 0)
 P1B = (abs(u), v)
 color.alpha = func(P1B,P1A,0)

0.5,0.5

0,0
1.0,0.0

u

v

v = P(u)

P2
P0

P1

Note: with this addition our
shader will be able
to handle the
boundary triangles and
Interior triangles.

No need for shader
switching.

	Slide 1

