Simple Quadratic, $\mathrm{n}=2$

If interior is required, we change sign of $P 1 v$ $\rightarrow \mathrm{P} 1(0.5,-0.5)$, wont affect the algorithm

Let $A=(u, v)=(u, P(u))$
Let $B=(u, a b s(v)) \rightarrow$ current pixel fragment

```
if(( v > 0 and ||P1B| > |P1A|)
    or (v < 0 and |P1B| < |PP1A|))
            color = c;
            c.alpha = func(P1B,P1A, sign(v))
else
    kill
```


Generalization, $\mathrm{n}>2$

Since POP2 is a boundary edge
\rightarrow the boundary edge case can be defined by signs different of the P2u.

Hence
if ($u<0$)
set color = c; Let P1A = (abs(u), 0)
P1B = (abs(u), v)
color.alpha $=$ func $(P 1 B, P 1 A, 0)$

Note: with this addition our shader will be able to handle the boundary triangles and Interior triangles.

No need for shader switching.

