

Introduction and Optimizations

Topics Covered

● Part I: What is Nifty GUI?
– A short Introduction to Nifty

– Showcase video of usage in games

● Part II: Optimize OpenGL Performance
– General OpenGL Performance principles

– How we've applied them in the latest Nifty (1.3.3)

– Demonstration using JOGL

Part I

What is Nifty GUI?

Live Demo: Nifty 1.2 Tutorial

What is Nifty GUI?

● Java Library in Development since 2007
– Open source at Sourceforge since April 2008

– Several major releases so far (latest: 1.3.3)

– BSD-License

● Use it to build interactive user interfaces for
games and other interactive applications
– Can be extended and styled easily and provides

many visual effects

– However, it is different from AWT/Swing or your
other usual GUI framework

What is Nifty GUI?

● Think of Nifty as a scenegraph
– At it's core Nifty only knows a limited number of

core elements:
● Panel: a rectangle area with a plain color or gradient
● Image: an Image that can be displayed
● Text: used to output bitmap fonts
● Control: A combination of the above to form an

abstraction like a Button, Textfield, ListBox and so on

– Nifty is used to layout and display these elements
and handles keyboard and mouse events

What is Nifty GUI?

● Example Scenegraph structure:

What is Nifty GUI?

● Scenegraph is stored in XML
– XML-Schema (XSD) available for validation and

tool support

● Scenegraph can be build from Java as well
(using Java Builder Pattern)

● Can be dynamically modified at runtime
– Add elements

– Remove elements

– Move elements

What is Nifty GUI?

● Nifty XML example:

What is Nifty GUI?

● The same example in Java:

What is Nifty GUI?

● Result: Panel with repeated background image

What is Nifty GUI?

● Nifty is very versatile
– It doesn't rely on a specific graphics framework

– Existing adapters to several libaries available:
● JOGL, LWJGL, jMonkeyEngine, Slick2D, Java2D
● Need a different one? a SPI (Service Provider Interface)

is available and can be easily implemented by yourself!

– Easy to integrate into your code
● It doesn't take over your complete rendering
● Just call nifty.render() when you want it to render and

nifty.update() to let it update internal state

What is Nifty GUI?

● General use-cases for Nifty:
– Interactive Menus and Displays

– Game Option screens

– In-Game HUD Displays

– Anything that displays icons or text with Java and
wants to do that in a somewhat nifty way ;)

● Let's show some real world examples of Nifty
next as its being used in actual games...

Nifty in Games

Video Showcase

Nifty GUI – More Information

● Nifty GUI – The Missing Manual
– Tutorial and reference documentation

– Everything you ever wanted to know about Nifty

– 100+ Pages

– Available as a free PDF-Download
● http://sourceforge.net/projects/nifty-gui/files/nifty-

gui/1.3.2/nifty-gui-the-manual-1.3.2.pdf/download

Nifty GUI – More Information

● Project Pages:
– Github:

https://github.com/void256/nifty-gui

– Sourceforge:
https://sourceforge.net/projects/nifty-gui/

– Twitter:

https://twitter.com/niftygui

– Blog:

http://nifty-gui.lessvoid.com/

https://github.com/void256/nifty-gui
https://sourceforge.net/projects/nifty-gui/
https://twitter.com/niftygui

Part II

OpenGL Performance
Optimization

Explained and Applied with
Nifty GUI 1.x

Overview

● Now we'll go a bit more into details:
– Introduction to the Nifty Renderer and why it

performed not so optimal

– What can you do in general to speed up OpenGL
rendering and how that was applied to Nifty

● Results of the improved Renderer
● Additional benefits of the new way to render

Nifty SPI

Nifty SPI

● Nifty provides Java Interfaces for:
– Rendering

– Inputevents (Keyboard + Mouse)

– Sound output

● Everything Nifty needs is abstracted into these
interfaces

● Nifty is build on top of the SPI

Nifty SPI

● Overview of components and the SPI (in green)

Nifty RenderDevice

● A closer look at the RenderDevice SPI:
– Java interface

de.lessvoid.nifty.spi.render.RenderDevice

– Tasks:
● provide screen dimensions to Nifty, load images/fonts
● Methods called when render frame begins and ends
● Set (OpenGL) states like blend mode and clipping
● Main task: render colored quads, images and text

– At the end all Nifty-GUI elements end up as quads,
images and text

Nifty RenderDevice

● Here are the interesting render*() methods
public interface RenderDevice {
...
void renderQuad(int x, int y, int width, int height, Color
color);

void renderQuad(int x, int y, int width, int height, Color
topLeft, Color topRight, Color bottomRight, Color bottomLeft);

void renderImage(RenderImage image, int x, int y, int width,
int height, Color color, float imageScale);

void renderImage(RenderImage image, int x, int y, int w, int h,
int srcX, int srcY, int srcW, int srcH, Color color, float
scale, int centerX, int centerY);

void renderFont(RenderFont font, String text, int x, int y,
Color fontColor, float sizeX, float sizeY);
...
}

Nifty RenderDevice

● Typical Nifty rendering looks like this:
– renderDevice.beginFrame();

● renderDevice.setBlendMode(BlendMode.BLEND);
● renderDevice.renderQuad(...);
● renderDevice.renderImage(..);
● renderDevice.enableClip(...);
● renderDevice.renderQuad(...);
● … and so on

– renderDevice.endFrame();

So …
What's wrong with the existing implementation?

Rendering – What's wrong

● The current implementation took a somewhat
naive, brute-force approach:
– Vertex submission is using immediate mode with

many calls to GL: glBegin, glVertex, …

– OpenGL state is changed in every render* method
● Texturing is enabled/disabled all the time and the current

texture is switched to different textures
● clipping rectangle is changed/enabled with glScissors
● Blendmode is change with glBlendMode as needed

We can do better:
General OpenGL Performance Tips

General OpenGL wisdom

● f.i. found in: „OpenGL Insights, Chapter 25“ or
„OpenGL Programming Guide for Mac“:
– Avoid glBegin/glEnd calls: function call and data

copying overhead. Better use VBO or at least client-
side vertex arrays.

– Avoid redundant state changes: Save time by
removing unnecessary calls to GL

– Group primitives together so that they can be
rendered with as few draw calls as possible

General OpenGL wisdom

● f.i. found in: „OpenGL Insights, Chapter 25“ or
„OpenGL Programming Guide for Mac“:
– Avoid glBegin/glEnd calls: function call and data

copying overhead. Better use VBO or at least client-
side vertex arrays.

– Avoid redundant state changes: Save time by
removing unnecessary calls to GL

– Group primitives together so that they can be
rendered with as few draw calls as possible

● So actually, Nifty did that all wrong ;-)

Let's fix the renderer!
One Issue at a time

Step 1: Optimize vertex submission

Step 1: Optimize vertex submission

● Use Vertex Arrays (really a no brainer)
– Available since early OpenGL 1.1 days (1995)

– Store all vertices in an array and give OpenGL a
pointer to that array

● This helps because:
– There are no individual glBegin/glVertex/glEnd calls

for each quad anymore. This saves us thousands of
OpenGL calls for complex GUIs.

Step 1: Optimize vertex submission

● Usage in Nifty:
– The optimized RenderDevice keeps a single

FloatBuffer for all Quads that need to be rendered

– The render* methods will now simply add four
vertices of the current quad to this FloatBuffer

– In the endFrame method Nifty draws them all with a
single glDrawArrays(GL_QUADS...) call

● This reduces the number of OpenGL draw calls
significantely

Step 2: Optimize Texture State

Step 2: Optimize Texture State

● Trick: Let texturing enabled all the time so we
don't have to switch it always on and off ;)
– Always submit textured quads

– How to render a plain colored quad then?
● Simply render a special prepared area of the texture that

contains solid white colored pixels
● Stretching a single white pixel to the size of the quad will

fill the quad with white color
● Can be combined with vertex colors as well

Step 2: Optimize Texture State

● How to render different images?
– Combine all individual images into one big texture

and keep this texture always active!

● Texture Atlas ftw!
– solution is simple in theory but was quite involved

– In most cases you would combine textures as a
pre-process but for Nifty it needs to be dynamic

● Images can be loaded / disposed at any time and are
likely to change between Nifty Screens

Step 2: Optimize Texture State

● Let’s enter the world of texture packing:
– Is actually a huge topic

● see PhD Thesis of Andrea Lodi: „Algorithms for Two
Dimensional Bin Packing and Assignment Problems“

– Looking for a simple solution:
● Popular „Lightmap Packing Algorithm by Black Pawn“:

http://www.blackpawn.com/texts/lightmaps/
● Java port already available by lukaszdk:

https://github.com/lukaszdk/texture-atlas-generator
– Modified for Nifty to separate algorithm from graphics handling
– Results available as TextureAtlasGenerator class (single self-

contained class in Nifty repo but with no Nifty dependencies)

https://github.com/lukaszdk/texture-atlas-generator

Step 2: Optimize Texture State

● Nifty texture atlas algorithm overview:
– Each Nifty Screen starts with an empty texture (2k

texture worked well)

– Nifty tracks which image belongs to which Screen
when images are first accessed

– Position in the texture atlas will be determined by
TextureAtlasGenerator algorithm so that all required
images are added to the atlas

– Switching images is then simply a modification of
the texture coordinates of individual quads

Step 2: Optimize Texture State

● Example: Nifty Standard Controls Demo

Step 2: Optimize Texture State

● On the fly generated texture atlas (2048x2048)

Step 2: Optimize Texture State

● Things to consider:
– When accessing images while a screen is already

active, Nifty needs to upload the texture on the fly
● glSubImage* is used to update parts of the texture
● You can get away with a couple of sub texture uploads

per frame but would be best if most images are known
when the Nifty screen is initialized

– If the image does not fit into the atlas Nifty will
complain in the log but will continue working

– The texture atlas is reset when you switch from one
screen to another

3. Optimize Clipping

3. Optimize Clipping

● Nifty allows you to specify a „childClip“ attribute
– All child elements will then be clipped to the parent

● glScissors is used for this but can't be used in
between a single glDrawArrays call

● Solution: Clip on the CPU!
– It's only 2d so it's easy

– Already clipped quads will be added to the vertex
array

– Result: no changes to glScissors necessary!

4. Optimize Blendmode

4. Optimize Blendmode

● Only two blendmodes supported by Nifty:
– Standard: regular alpha transparency blending

● glBlendFunc(GL_SRC_ALPHA,
GL_ONE_MINUS_SRC_ALPHA)

– Optional blendmode multiply (for special effects):
● glBlendFunc(GL_DST_COLOR, GL_ZERO)

● Can't change blendmode while rendering VA
● Compromise: Nifty will create a new batch (new

vertex array) when blendmode changes
– Rendering some batches still better than hundreds

Put everything together:
Unified RenderDevice

Unified RenderDevice

● All of the discussed steps required to be
supported in all adapter implementations:
– Batched JOGL, Batched LWJGL, Batched JME3

and so on

– These implementations have to solve the exact
same problems (Texture atlas, Batching, …)

– Not a very clever approach

● Better solution: solve it once for all adapters:
– Provide a unified batched RenderDevice impl!

Unified RenderDevice

● Default implementation for the RenderDevice:
– de.lessvoid.nifty.batch.BatchRenderDevice handles

everything we've discussed so far

● Specific adapters still needed but now:
– Much simpler

– Will just receive the quads and have to cache them
so that they can be rendered in one step later

– New: need to be able to replace subtextures

Unified RenderDevice

● Additional benefits:
– Text rendering is now handeled inside of Nifty

● Each glyph is just a simple quad
● Kerning, text string width calculations as well as text

encoded colors are handled in the same way
● Text finally looks exactly the same in all libs

● Replacing existing RenderDevice with the new
one is very easy
– Just use the BatchRendererDevice now and

provide the BatchRendererDevice with the adapter
impl

One more thing...

OpenGL Core Profile Support

● Up until now only legacy OpenGL support
– Couldn't really use Nifty when you use Core Profile

– Simpler Interface made support now easy

● Can finally use modern OpernGL with Nifty too
● OpenGL ES support using JOGL currently work

in progress but should be available soon

Optimization Results

Results of the improved Renderer

● Test: Nifty Standard Controls Demo

Results of the improved Renderer

● Test: Nifty Standard Controls Demo

~600 Quads, ~2400 Vertices

● Mac Pro, Early 2009, OS X 10.8.4
– 2 x 2,26 Ghz Quad-Core, 8 GB RAM

– ATI Radeon HD 5870 1024 MB

● Results (Rendertime Nifty in ms):

Old Renderer Batched Batched Core Profile

1.736 ms 0.617 ms 0.642 ms

Results of the improved Renderer

● How much you gain depends on the complexity
of your GUI
– Very few elements: you don't gain a lot since there

is not much overhead

– Many elements/complex GUI: batched renderer
works a lot better (more FPS, less frametime)

Live Test/Demo
Using Controls Demo

Nifty GUI

Future Plans

Nifty GUI – Future

● Nifty 2.0!
– Apply everything we've learned so far to make Nifty

better (and we've learned a lot in the last 5 years ;)

– But keep the basic concepts the same
● Layout algorithms, Elements, Controls

● Provide better performance
– If nothing has changed don't render anything at all

(Dirty rectangle optimizations)

– Render to Texture support
● cache element content

Nifty GUI – Future

● More Features
– Provide canvas support

● Render points and lines, maybe curves too
● Generate content instead of fixed images

– Provide real transformation matrix per Nifty Element
(rotate elements, scale, perspective distortion, 3d ..)

– Provide fragment shader effects (Shadow,
Gaussian blur and so on)

Nifty GUI – Future

● API changes
– Make core API simpler

● Remove need to call layoutElements() manually

– Provide clean public API
● Internals and public API kinda mixed in current

generation Nifty 1.x – pretty confusing at times

● ETA
– Preview version Christmas 2013

– Final version 2014

Nifty GUI

Contact

Nifty GUI - Contact

● Software Development Jens Hohmuth
– Commercial Nifty GUI support available

● E-Mail: jens.hohmuth@gmx.de
● Twitter: https://twitter.com/void256

mailto:jens.hohmuth@gmx.de

Thanks!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

