
Session 3167

The J2SE™ 1.4 Release,
OpenGL®, and New I/O
High-Performance 3D Graphics
for the Desktop Client

Sven Goethel Kenneth Russell
President Member of Tech Staff
Jausoft Sun Microsystems, Inc.

Session 3167 2

Presentation Goal

Show how to build high-performance
3D graphics applications using the
Java™ programming language

Session 3167 3

Learning Objectives

 As a result of this presentation, you will
be able to:
 Understand how New I/O benefits

high-throughput applications
 See how OpenGL®, for Java™ Technology

takes advantage of New I/O
 Build effective 3D graphics applications using

the Java™ 2 Platform, Standard Edition, 1.4
release and OpenGL, for Java Technology

 See several cool technology demonstrations

Session 3167 4

Speakers’ Qualifications

 Sven Goethel is the primary developer of
“OpenGL, for Java Technology”, a free
software (LGPL) programming language
binding for the Java platform, for the
OpenGL 3D graphics API

 Kenneth Russell is a member of the Java
HotSpot™ VM group and a contributor
to the New I/O and OpenGL, for Java
Technology projects

Session 3167 5

Presentation Thesis

 You can write portable, high-performance 3D
applications and games today using the Java
2 Platform, Standard Edition, version 1.4
and OpenGL, for Java Technology

Session 3167 6

Presentation Agenda

 New I/O vs. Java Native Interface (JNI)
in the J2SE 1.3 platform and earlier

 OpenGL overview

 OpenGL, for Java Technology

 Demos

 Performance Hints

Session 3167 7

Problem Statement

 Pre-1.4 JNI technology provides limited
interaction with data managed by the Java
virtual machine (JVM™) implementation

Session 3167 8

J2SE 1.3 Platform
Example #1

 Sending float[] down to native code

float[] myArray = new float[10];
// ... fill in with data ...
sendDataToC(myArray);
// ... later ...
releaseCData(myArray);

Session 3167 9

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 10

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 11

J2SE 1.3 Platform
Example #1

 Native code:
 float* ptr;

 JNIEXPORT void JNICALL Java_MyClass_sendDataToC
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 ptr=(*env)->GetFloatArrayElements(env,arr,NULL);
 C_function_requiring_float_ptr(ptr);
 }
 JNIEXPORT void JNICALL Java_MyClass_releaseCData
 (JNIEnv* env, jobject unused, jfloatArray arr)
 {
 (*env)->ReleaseFloatArrayElements(env, arr,
 ptr, JNI_ABORT);
 }

Session 3167 12

J2SE 1.3 Platform
Example #1 Discussion

 Upon call to GetFloatArrayElements, JVM
must return float* which does not move in
memory (unaffected by garbage collection,
or GC)

 Can be implemented in one of two ways
 Copy data out of garbage-collected heap

into malloc’ed space
 “Pin” object

Session 3167 13

J2SE 1.3 Platform
Example #1 Discussion

 Problems:
 Copying can impose unacceptable overhead

for certain kinds of applications
 Depending on GC algorithm, pinning is difficult

or impossible to implement

Session 3167 14

J2SE 1.3 Platform
Example #2

 Sending float[] down to native code (again)

float[] myArray = new float[10];
// ... fill in with data ...
sendDataToC(myArray);

Session 3167 15

J2SE 1.3 Platform
Example #2

 Native code:
JNIEXPORT void JNICALLJava_MyClass_sendDataToC
(JNIEnv* env, jobject unused, jfloatArray arr)
{
 float* ptr =
 (float*) (*env)->GetPrimitiveArrayCritical
 (env, arr, NULL);

 C_function_requiring_float_ptr(ptr);

 // C routine must be "done" with pointer by now
 (*env)->ReleasePrimitiveArrayCritical
 (env, arr, ptr, JNI_ABORT);
}

Session 3167 16

J2SE 1.3 Platform
Example #2 Discussion

 Specification of “Get/Release Critical” routines
imposes severe restrictions on what can occur
between them
 No returning between Get/Release
 No calling other JNI functions

 No blocking calls like select() or read()
 Must not access pointer outside Get/Release

Session 3167 17

J2SE 1.3 Platform
Example #2 Discussion

 Restrictions increase probability that “pinning”
will occur
 Java HotSpot™ VM implements by disabling

GC between them

 However, restrictions usually result in having
to copy data anyway, defeating the purpose

Session 3167 18

J2SE 1.3 Platform
Example #2 Discussion

 Even if pinning is implemented, can not talk
to outside memory directly
 Video card RAM
 Sound card buffers

 No way to make “fake array” wrapping
arbitrary memory region

Session 3167 19

The Java™ 2 Platform, Standard Edition
(J2SE™) 1.4 Release and New I/O

 java.nio provides solutions for the two
fundamental problems
 Passing JVM accessible data to C functions
 Making data not managed by the JVM

accessible to Java programming language
code (“Java code”)

 Does so with
 High performance
 Same safety as arrays

Session 3167 20

NIO Buffers

 Classes which define APIs for accessing
primitive data
 get(), put() methods

 Direct buffers provide access to outside
memory

 New JNI routines allow Java/C programming
language interaction
 Programs for the Java platform can operate

on arbitrary data

Session 3167 21

NIO Example #1

 Sending floating-point data to native code:

final int SIZEOF_FLOAT = 4;
FloatBuffer fbuf =
 ByteBuffer.allocateDirect(10 * SIZEOF_FLOAT).
 asFloatBuffer();
for (int i = 0; i < 10; i++) {
 fbuf.put(i, computeDatum(i));
}
sendDataToC(fbuf);

Session 3167 22

NIO Example #1

 Native code:

JNIEXPORT void JNICALL Java_MyClass_sendDataToC
(JNIEnv* env, jobject unused, jobject buf)
{
 float* ptr = (float*)
 (*env)->GetDirectBufferAddress(env, buf);
 C_function_requiring_float_ptr(ptr);
}

Session 3167 23

NIO Example #1 Discussion

 Java code responsible for holding reference
to direct buffer
 Avoiding unexpected GC

 Otherwise, no restrictions on use of pointer
in native code

Session 3167 24

NIO Example #2

 Simple example: inverting video

ByteBuffer buf = getVideoCardMemory();
// Assuming R, G, B components
int size = 3 * width * height;
for (int i = 0; i < size; i++) {
 buf.put(i, (byte) (255 - (buf.get(i) & 0xFF)));
}

Session 3167 25

NIO Example #2

 Native code:
JNIEXPORT jobject JNICALL
Java_MyClass_getVideoCardMemory
(JNIEnv* env, jobject unused)
{
 void* ptr = Get_Video_Card_Memory();
 int width = Get_Screen_Width();
 int height = Get_Screen_Height();
 int bytesPerPixel = Get_Screen_Depth();
 return (*env)->
 NewDirectByteBuffer(env, ptr,
 width * height * bytesPerPixel);
}

Session 3167 26

NIO Summary

 GetDirectBufferAddress

 Outbound data transfer

 NewDirectByteBuffer

 Inbound data transfer

 Individual element access via get/put

Session 3167 27

OpenGL

 3D graphics library developed by Silicon
Graphics in early 1990’s

 Runs on every major operating system
 Hardware range from supercomputers to PCs
 Low-level, immediate-mode API

 Can build higher-level, retained-mode APIs
on top of it

 Java 3D™ API does this (largely in native code)
 SGI’s Open Inventor and OpenGL

Performer APIs

Session 3167 28

OpenGL

 Abstraction is a state machine

 Set up properties for geometric primitives
 Color, texture, shininess, opacity

 Send geometric primitives (usually triangles)
to graphics card

Session 3167 29

OpenGL

 Trivial example:

glBegin(GL_TRIANGLES);
glVertex3f(1.0f, 0.0f, 0.0f);
glVertex3f(0.0f, 1.0f, 0.0f);
glVertex3f(1.0f, 1.0f, 0.0f);
glEnd();

Session 3167 30

OpenGL

 Most flexible way of drawing geometry
with OpenGL is via vertex arrays
 Set up region of memory containing 3D points
 Transfer connectivity information to card
 Allows application to modify geometry without

having to make on the order of one function
call per triangle

Session 3167 31

OpenGL

 Vertex array example:
// Set up data buffer
// Two adjacent triangles forming a square
GLfloat* coords = { 1.0f, 0.0f, 0.0f,
 1.0f, 1.0f, 0.0f,
 0.0f, 1.0f, 0.0f,
 0.0f, 0.0f, 0.0f };
GLint* elements = { 0, 1, 2, 1, 2, 3 };
glEnableClientState(GL_VERTEX_ARRAY);
// Size of vertices (2, 3, 4), type of vertices,
// stride between vertices (unused), ptr to data
glVertexPointer(3, GL_FLOAT, 0, coords);
// Geometry type, num primitives, indices' data type
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT,
 elements);

Session 3167 32

OpenGL

 OpenGL semantics are strict and vertex arrays
are not as efficient as desired
 Application can not continue until

glDrawElements call is complete

 NVidia® and ATI® have devised extensions
to allow parallel processing of vertex arrays
 Allocate memory on AGP bus or on card itself

 More on this later

Session 3167 33

OpenGL®, for Java™ Technology

 Jausoft’s programming language binding,
for the Java platform, for OpenGL
 Licensed under the “Lesser GNU Public

License” (LGPL)
 Provides Java technology-based APIs

for accessing all OpenGL routines
 Default implementation for many

operating systems

Session 3167 34

OpenGL, for Java Technology

 Highly portable
 Works on development kits from Sun™, IBM, Apple

 Java™ Platform releases 1.1.x through 1.4

 Works on Netscape™ and Internet Explorer VMs

 Binaries available for GNU/Linux, Mac OS,
Solaris™, Windows

 Should work on any Java 2 Platform + OpenGL +
Unix® + X11 environment

 QNX + X11 + OpenGL + J2ME platform

 OSGI/Automotive Systems

Session 3167 35

OpenGL, for Java Technology

 How it works
 C2J program parses C header files (gl.h, glu.h)

 Using current Mesa3D OpenGL compatible headers
 C2J is LGPL and part of OpenGL, for Java technology

 Generates JNI based code and Java platform
interfaces

 A few routines are coded by hand, but most
are autogenerated

 Binding for OpenGL 1.3 plus extensions (983
functions) all based upon the same well tested
primitives in the C2J compiler

Session 3167 36

OpenGL, for Java Technology
and New I/O

 OpenGL, for Java Technology 2.8 includes
built-in java.nio support

 Vertex arrays, textures, other large objects
can be stored in java.nio direct buffers

 Allows fast, robust, portable 3D applications
to be written with no native code in the
application

Session 3167 37

Unique Features

 Easy-to-use, multithreaded user API
 Animations or still frames
 Textured objects
 Screen snapshots

 Provides access to all vendor extensions
with no additional native code
 Can test for and use optimized routines;

i.e., NVidia vertex array range extension
 Compatible with full-screen support in the

J2SE 1.4 release
 Sun’s Java™ Development Kit (JDK™):
java -Dsun.java2d.noddraw=true

Session 3167

Session 3167 39

NVidia vertex_array_range Demo

Session 3167 40

NVidia vertex_array_range Demo

 C++ version illustrates 2x speedups
with this extension

 Runs at 30 Hz on PIII, 700 MHz, GeForce 256

 Amounts to different version of malloc()
 Minimal change for C/C++ programs

Session 3167 41

NVidia vertex_array_range Demo

 Ported to the Java platform using JDK 1.4
software; OpenGL, for Java Technology 2.8;
Java HotSpot™ Client VM

 Frame rate of port is 27 Hz
 90% of optimized C++ speed

 Java programming language code now able to
take advantage of leading-edge 3D hardware

 On faster PCs, Java technology version is not
as competitive (65–75% of C speed)
 More optimizations to be done in compilers

(e.g., Java HotSpot VM)

Session 3167 42

Arkanae Demo

Session 3167 43

Arkanae Demo

 Free software 3D fantasy/adventure game

 Core team: Bertrand and Jean-Baptiste Lamy

 Runs fast; quite polished

 Application is built on top of OpenGL, for Java
Technology and itself contains no native code

 Get it at http://arkanae.tuxfamily.org/

Session 3167 44

Grand Canyon Demo

Session 3167 45

Grand Canyon Demo

 Introduced at the 2001 JavaOneSM conference

 300 MB data set visualized in real time with
Sun JDK 1.4; OpenGL, for Java Technology
2.8; and Java HotSpot Client VM

Session 3167 46

Grand Canyon Demo

 Multiresolution algorithm
 More detail for terrain closer to camera
 Data set divided into square tiles

 513x513 vertices; 15x13 tiles

 Highest resolution memory-mapped in
using java.nio

 100 MB of geometric data

 Every vertex, every frame is processed by Java
programming language code (“Java code”)

Session 3167 47

Grand Canyon Demo

 To render tile at lower resolution, recursively
drop every other sample

 Done every frame for every visible tile by
Java code
 Output buffer is a java.nio direct FloatBuffer

 View culling, collision detection

Session 3167 48

Grand Canyon Demo

 Cracks between tiles at differing resolutions
are patched with “fillets”

Session 3167 49

Grand Canyon Demo

 Cracks relatively minor feature of landscape
 Fillets allow independent processing of tiles

and faster inner loops

Session 3167 50

Grand Canyon Demo

 Lower-resolution textures are generated offline
 Appropriate resolution memory-mapped

in using java.nio
 Textures paged in by background thread

 Advantageous in multi-CPU systems
 Very easy to implement using Java technology

 synchronized keyword
 Thread and Collections APIs

 Memory-mapped texture data passed directly
down into OpenGL, for Java Technology

Session 3167 51

Grand Canyon Demo

 Run-time statistics:
 Roughly 90,000 triangles per frame at 45 fps
 4.0 million tris/second; up to 5.0 in some areas

Session 3167 52

Pup Demo

Session 3167 53

Pup Demo

 Developed by the Synthetic Characters Group
at The Media Lab, MIT

 Showcases research in behavior systems for
intelligent, interactive 3D animated characters

Session 3167 54

Pup Demo

 Sophisticated behavior system research and
learning algorithms
 Inspired by ethology (study of animal behavior)

 Run-time motion blending and animation
 Walk left/straight/right
 Sit happy/sad

 All done in the Java programming language

Session 3167 55

Pup Demo

 Graphics system
 Skinning on complex model

 53 joints, > 2000 vertices

 Custom vertex shaders
 Cartoon shading
 Real-time shadows

 Originally implemented in C++ using
Microsoft’s Direct3D

 Hooked into the Java platform with large
quantities of native code

Session 3167 56

Pup Demo

 Graphics system ported to JDK 1.4 software
and OpenGL, for Java Technology 2.8
 Minimal scene graph written to wrap OpenGL,

for Java Technology
 Skinning implemented in Java programming

language
 Cartoon shading and shadows implemented

using OpenGL techniques
 Eliminates nearly all native code in application

 Remaining: game controller…

Session 3167 57

Pup Demo

 Results
 Java programming language port of graphics

system is 86% of the speed of optimized C++
 Can be debugged with no performance penalty

 Full-speed debugging in J2SE 1.4 release

 Up to 11% faster than C++ debug build

Session 3167 58

Performance Hints

 When using direct buffers in conjunction with
JNI, always set the byte order
 ByteBuffer.order(ByteOrder.nativeOrder())

 This is a correctness issue

 Very easy to forget

 Write utility class for allocating direct buffers
and make this call before returning them

Session 3167 59

Performance Hints

 Use absolute put(index, data) and
get(index) methods in inner loops instead
of put(data) and get()
 Typically have a loop index available anyway
 Non-absolute versions maintain internal indices

 Duplicated work

 Absolute versions generate code very similar
to array indexing (i.e., fast)

Session 3167 60

Performance Hints

 In inner loops, access only locals instead
of data members
 Sometimes tricky to see with presence of

inner classes

Session 3167 61

Performance Hints

 class MyClass {
 FloatBuffer myBuf;
 // ...
 void doComputation() {
 for (int i = 0; i < size; i++) {
 // Avoid
 myBuf.put(i, computeNextDatum());
 }
 }
 }

Session 3167 62

Performance Hints

 class MyClass {
 FloatBuffer myBuf;
 // ...
 void doComputation() {
 // Better
 FloatBuffer buf = myBuf;
 for (int i = 0; i < size; i++) {
 buf.put(i, computeNextDatum());
 }
 }
 }

Session 3167 63

Performance Hints

 Avoid mixing use of direct and non-direct
buffers in applications
 Compilers for the Java HotSpot VM currently

will not be able to inline accessors well
 Other DKs for Java technology may do better

 Problem we are taking very seriously and will
address in future release

Session 3167 64

Summary

 J2SE™ 1.4 release; OpenGL, for Java™
Technology; and New I/O reach previously
unattainable performance levels for the Java
programming language

 Can write high-performance 3D applications
in the Java programming language today
 Portability, safety, and ease-of-development

of Java technology

 Already fast; future releases will only be faster

Session 3167 65

Conclusion

 Start writing 3D applications and games
in the Java programming language!

Session 3167

Session 3167

