Sun's 2002 Worldwide Java Developer Conferenc

The J2SE™ 1.4 Release,
OpenGL®, and New I/O

High-Performance 3D Graphics
for the Desktop Client

Sven Goethel Kenneth Russell
President Member of Tech Staff
Jausoft Sun Microsystems, Inc.



Presentation Goal

Show how to build high-performance
3D graphics applications using the
Java" programming language

JavaOne



Learning Objectives

As a result of this presentation, you will
be able to:

Understand how New |/O benefits
high-throughput applications

See how OpenGL®, for Java" Technology
takes advantage of New 1/O

Build effective 3D graphics applications using
the Java " 2 Platform, Standard Edition, 1.4
release and OpenGL for Java Technology

See several cool technology demonstrations

JavaOne



Speakers’ Qualifications

Sven Goethel is the primary developer of
“OpenGL, for Java Technology”, a free
software (LGPL) programming language
binding for the Java platform, for the
OpenGL 3D graphics API

Kenneth Russell is a member of the Java
HotSpot™ VM group and a contributor
to the New I/O and OpenGL, for Java
Technology projects

JavaOne



Presentation Thesis

You can write portable, high-performance 3D
applications and games today using the Java
2 Platform, Standard Edition, version 1.4

and OpenGL, for Java Technology

JavaOne



Presentation Agenda

New |/O vs. Java Native Interface (JNI)
in the J2SE 1.3 platform and earlier

OpenGL overview
OpenGL, for Java Technology
Demos

Performance Hints

JavaOne



Problem Statement

Pre-1.4 JNI technology provides limited
interaction with data managed by the Java
virtual machine (JVM"™) implementation

JavaOne



J2SE 1.3 Platform
Example #1

Sending float[] down to native code

float[] myArray = new float[10];

// ... £ill in with data ...
sendDataToC (myArray) ;
// ... later ...

releaseCData (myArray) ;

JavaOne



J2SE 1.3 Platform
Example #1

Native code:
float* ptr;

JNIEXPORT void JNICALL Java MyClass sendDataToC
(INIEnv* env, jobject unused, jfloatArray arr)
{
ptr=(*env)->GetFloatArrayElements (env,arr,NULL) ;
C function requiring float ptr(ptr);
}
JNIEXPORT void JNICALL Java MyClass_ releaseCData
(INIEnv* env, jobject unused, jfloatArray arr)

{

(*env) ->ReleaseFloatArrayElements (env, arr,
ptr, JNI_ABORT) ;

JavaOne



J2SE 1.3 Platform
Example #1

Native code:
float* ptr;

JNIEXPORT void JNICALL Java MyClass sendDataToC
(INIEnv* env, jobject unused, jfloatArray arr)
{
ptr=(*env)->GetFloatArrayElements (env,arr,NULL) ;
C function requiring float ptr(ptr);
}
JNIEXPORT void JNICALL Java MyClass_ releaseCData
(INIEnv* env, jobject unused, jfloatArray arr)

{

(*env) ->ReleaseFloatArrayElements (env, arr,
ptr, JNI_ABORT) ;

JavaOne



J2SE 1.3 Platform
Example #1

Native code:
float* ptr;

JNIEXPORT void JNICALL Java MyClass sendDataToC
(INIEnv* env, jobject unused, jfloatArray arr)
{
ptr=(*env)->GetFloatArrayElements (env,arr,NULL) ;
C function requiring float ptr(ptr);
}
JNIEXPORT void JNICALL Java MyClass_ releaseCData
(INIEnv* env, jobject unused, jfloatArray arr)

{

(*env) ->ReleaseFloatArrayElements (env, arr,
ptr, JNI_ABORT) ;

JavaOne



J2SE 1.3 Platform
Example #1 Discussion

Upon call to GetFloatArrayElements, JVM
must return float™ which does not move in
memory (unaffected by garbage collection,
or GC)

Can be implemented in one of two ways

Copy data out of garbage-collected heap
iInto malloc’ed space

“Pin” object

JavaOne



J2SE 1.3 Platform
Example #1 Discussion

Problems:

Copying can impose unacceptable overhead
for certain kinds of applications

Depending on GC algorithm, pinning is difficult
or impossible to implement

JavaOne



J2SE 1.3 Platform
Example #2

Sending float[] down to native code (again)

float[] myArray = new float[10];
// ... £ill in with data ...
sendDataToC (myArray) ;

JavaOne



J2SE 1.3 Platform
Example #2

Native code:

JNIEXPORT void JNICALLJava MyClass sendDataToC
(INIEnv* env, jobject unused, jfloatArray arr)
{
float* ptr =
(float*) (*env)->GetPrimitiveArrayCritical
(env, arr, NULL) ;

C function requiring float ptr(ptr);
// C routine must be "done" with pointer by now

(*env) ->ReleasePrimitiveArrayCritical
(env, arr, ptr, JNI ABORT) ;

JavaOne



J2SE 1.3 Platform
Example #2 Discussion

Specification of “Get/Release Critical” routines
Imposes severe restrictions on what can occur
between them

No returning between Get/Release
No calling other JNI functions
No blocking calls like select () or read()

Must not access pointer outside Get/Release

JavaOne



J2SE 1.3 Platform
Example #2 Discussion

Restrictions increase probability that “pinning”
will occur

Java HotSpot™ VM implements by disabling
GC between them

However, restrictions usually result in having
to copy data anyway, defeating the purpose

JavaOne



J2SE 1.3 Platform
Example #2 Discussion

Even if pinning is implemented, can not talk
to outside memory directly

Video card RAM
Sound card buffers

No way to make “fake array” wrapping
arbitrary memory region

JavaOne



The Java™ 2 Platform, Standard Edition
(J2SE™) 1.4 Release and New I/O

java.nio provides solutions for the two
fundamental problems

Passing JVM accessible data to C functions

Making data not managed by the JVM
accessible to Java programming language
code (“Java code”)

Does so with
High performance
Same safety as arrays

JavaOne



NIO Buffers

Classes which define APIs for accessing
primitive data

get (), put () methods

Direct buffers provide access to outside
memory

New JNI routines allow Java/C programming
language interaction

Programs for the Java platform can operate
on arbitrary data

JavaOne



NIO Example #1

Sending floating-point data to native code:

final int SIZEOF FLOAT = 4;
FloatBuffer fbuf =
ByteBuffer.allocateDirect (10 * SIZEOF FLOAT) .
asFloatBuffer () ;
for (int i = 0; 1 < 10; i++) {
fbuf.put (i, computeDatum(i)) ;

}
sendDataToC (fbuf) ;

JavaOne



NIO Example #1

Native code:

JNIEXPORT void JNICALL Java MyClass sendDataToC
(INIEnv* env, Jjobject unused, jobject buf)

{
float* ptr = (float*)
(*env) ->GetDirectBufferAddress (env, buf);
C function requiring float ptr(ptr);
}

JavaOne



NIO Example #1 Discussion

Java code responsible for holding reference
to direct buffer

Avoiding unexpected GC

Otherwise, no restrictions on use of pointer
In native code

JavaOne



NIO Example #2

Simple example: inverting video

ByteBuffer buf = getVideoCardMemory () ;

// Assuming R, G, B components

int size = 3 * width * height;

for (int 1 = 0; 1 < size; i++) {

buf.put(i, (byte) (255 - (buf.get(i) & OxFF)));
}

JavaOne



NIO Example #2

Native code:

JNIEXPORT jobject JNICALL
Java MyClass getVideoCardMemory
(INIEnv* env, Jjobject unused)
{
void* ptr Get Video Card Memory() ;
int width Get Screen _Width () ;
int height = Get_Screen_Helght(),

int bytesPerPixel = Get Screen Depth();
return (*env)->

NewDirectByteBuffer (env, ptr,
width * height * bytesPerPixel) ;

JavaOne



NIO Summary

GetDirectBufferAddress
Outbound data transfer

NewDirectByteBuffer
Inbound data transfer

Individual element access via get/put

JavaOne



OpenGL

3D graphics library developed by Silicon
Graphics in early 1990’s

RuNs on every major operating system
Hardware range from supercomputers to PCs

| ow-level, immediate-mode API

Can build higher-level, retained-mode APIs
on top of it

Java 3D" API does this (largely in native code)

SGlI’s Open Inventor and OpenGL
Performer APIs

JavaOne



OpenGL

Abstraction Is a state machine

Set up properties for geometric primitives
Color, texture, shininess, opacity

Send geometric primitives (usually triangles)
to graphics card

JavaOne



OpenGL

Trivial example:

glBegin (GL TRIANGLES) ;
glvertex3f(1.0£f, 0.0£, 0.0f);
glvVertex3f(0.0£f, 1.0£, 0.0f);
glvertex3f(1.0£f, 1.0£, 0.0f);
glEnd() ;

JavaOne



OpenGL

Most flexible way of drawing geometry
with OpenGL is via vertex arrays

Set up region of memory containing 3D points
Transfer connectivity information to card

Allows application to modify geometry without
having to make on the order of one function
call per triangle

JavaOne



OpenGL

Vertex array example:

// Set up data buffer
// Two adjacent triangles forming a square

GLfloat* coords = { 1.0£, 0.0£, 0.0f,
1.0£, 1.0£, 0.0f,
0.0£, 1.0£, 0.0f,
0.0£, 0.0£, 0.0f };

GLint¥* elements = { 0, 1, 2, 1, 2, 3 };

glEnableClientState (GL VERTEX ARRAY) ;

// Size of vertices (2, 3, 4), type of vertices,

// stride between vertices (unused), ptr to data

glvertexPointer (3, GL FLOAT, 0, coords);

// Geometry type, num primitives, indices' data type

glDrawElements (GL TRIANGLES, 6, GL UNSIGNED INT,
elements) ;

JavaOne



OpenGL

OpenGL semantics are strict and vertex arrays
are not as efficient as desired

Application can not continue until
glDrawElements call is complete

NVidia® and ATI® have devised extensions
to allow parallel processing of vertex arrays

Allocate memory on AGP bus or on card itself

More on this later

JavaOne



OpenGL®, for Java™ Technology

Jausoft’s programming language binding,
for the Java platform, for OpenGL

_icensed under the “Lesser GNU Public
_icense” (LGPL)

Provides Java technology-based APIs
for accessing all OpenGL routines

Default implementation for many
operating systems

JavaOne



OpenGL, for Java Technology

Highly portable
Works on development kits from Sun™, IBM, Apple
Java™ Platform releases 1.1.x through 1.4
Works on Netscape™ and Internet Explorer VMs

Binaries available for GNU/Linux, Mac OS,
Solaris™, Windows

Should work on any Java 2 Platform + OpenGL +
Unix® + X11 environment

QNX + X11 + OpenGL + J2ME platform
OSGIl/Automotive Systems

JavaOne



OpenGL, for Java Technology

How it works
C2J program parses C header files (gl.h, glu.h)

Using current Mesa3D OpenGL compatible headers
C2J is LGPL and part of OpenGL, for Java technology

Generates JNI based code and Java platform
interfaces

A few routines are coded by hand, but most
are autogenerated

Binding for OpenGL 1.3 plus extensions (983
functions) all based upon the same well tested
primitives in the C2J compiler

JavaOne



OpenGL, for Java Technology
and New I/0

OpenGL, for Java Technology 2.8 includes
built-in java.nio support

Vertex arrays, textures, other large objects
can be stored in java.nio direct buffers

Allows fast, robust, portable 3D applications
to be written with no native code in the
application

JavaOne



Unique Features

Easy-to-use, multithreaded user API
Animations or still frames
Textured objects

Screen snapshots

Provides access to all vendor extensions
with no additional native code

Can test for and use optimized routines;
l.e., NVidia vertex array range extension
Compatible with full-screen support in the

J2SE 1.4 release

Sun’s Java Development Kit (JDK™):
java -Dsun. java2d.noddraw=true

JavaOne



=T
[=

Demo

JavaOne



NVidia vertex_array range Demo

JavaOne



NVidia vertex_array range Demo

C++ version illustrates 2x speedups
with this extension

Runs at 30 Hz on PIll, 700 MHz, GeForce 256

Amounts to different version of malloc|)
Minimal change for C/C++ programs

JavaOne



NVidia vertex_array range Demo

Ported to the Java platform using JDK 1.4
software; OpenGL, for Java Technology 2.8;

Java HotSpot Client VM

Frame rate of port is 27 Hz
90% of optimized C++ speed

Java programming language code now able to
take advantage of leading-edge 3D hardware

On faster PCs, Java technology version is not
as Competmve (65-75% of C speed)

More optimizations to be done in compilers
(e.g., Java HotSpot VM)

JavaOne



Arkanae Demo

JavaOne



Arkanae Demo

Free software 3D fantasy/adventure game
Core team: Bertrand and Jean-Baptiste Lamy
Runs fast; quite polished

Application is built on top of OpenGL, for Java
Technology and itself contains no native code

Get it at http://arkanae.tuxfamily.org/

JavaOne



Grand Canyon Demo

E‘Ei. Termrain Database Flyer [_ |0

JavaOne




Grand Canyon Demo

Introduced at the 2001 JavaOne™™ conference

300 MB data set visualized in real time with
Sun JDK 1.4; OpenGL, for Java Technology
2.8; and Java HotSpot Client VM

JavaOne



Grand Canyon Demo

Multiresolution algorithm
More detail for terrain closer to camera

Data set divided into square tiles
513x513 vertices; 15x13 tiles

Highest resolution memory-mapped in
using java.nio

100 MB of geometric data

Every vertex, every frame is processed by Java
programming language code (“Java code”)

JavaOne



Grand Canyon Demo

To render tile at lower resolution, recursively
drop every other sample

|

Done every frame for every visible tile by
Java code

Output buffer is a java.nio direct FloatBuffer

View culling, collision detection

JavaOne



Grand Canyon Demo

Cracks between tiles at differing resolutions
are patched with “fillets”

surface
\

JavaOne



Grand Canyon Demo

Cracks relatively minor feature of landscape

Fillets allow independent processing of tiles
and faster inner loops

JavaOne



Grand Canyon Demo

Lower-resolution textures are generated offline

Appropriate resolution memory-mapped
INn using java.nio

Textures paged in by background thread

Advantageous in multi-CPU systems

Very easy to implement using Java technology
synchronized keyword

Thread and Collections APls

Memory-mapped texture data passed directly
down into OpenGL, for Java Technology

JavaOne



Grand Canyon Demo

Run-time statistics:
Roughly 90,000 triangles per frame at 45 fps
4.0 million tris/second; up to 5.0 in some areas

JavaOne



JavaOne

Session 3167



Pup Demo

Developed by the Synthetic Characters Group
at The Media Lab, MIT

Showcases research in behavior systems for
intelligent, interactive 3D animated characters

JavaOne



Pup Demo

Sophisticated behavior system research and
learning algorithms

Inspired by ethology (study of animal behavior)

Run-time motion blending and animation
Walk left/straight/right
Sit happy/sad

All done in the Java programming language

JavaOne



Pup Demo

Graphics system
Skinning on complex model
53 joints, > 2000 vertices
Custom vertex shaders
Cartoon shading
Real-time shadows

Originally implemented in C++ using
Microsoft’s Direct3D

Hooked into the Java platform with large
quantities of native code

JavaOne



Pup Demo

Graphics system ported to JDK 1.4 software
and OpenGL, for Java Technology 2.8

Minimal scene graph written to wrap OpenGL,
for Java Technology

Skinning implemented in Java programming
language

Cartoon shading and shadows implemented
using OpenGL techniques

Eliminates nearly all native code in application
Remaining: game controller...

JavaOne



Pup Demo

Results

Java programming language port of graphics
system is 86% of the speed of optimized C++

Can be debugged with no performance penalty
Full-speed debugging in J2SE 1.4 release
Up to 11% faster than C++ debug build

JavaOne



Performance Hints

When using direct buffers in conjunction with
JNI, always set the byte order

ByteBuffer.order (ByteOrder.nativeOrder ())

This Is a correctness issue
Very easy to forget

Write utility class for allocating direct buffers
and make this call before returning them

JavaOne



Performance Hints

Use absolute put (index, data) and
get (index) methods in inner loops instead
of put (data) and get ()

Typically have a loop index available anyway

Non-absolute versions maintain internal indices
Duplicated work

Absolute versions generate code very similar
to array indexing (i.e., fast)

JavaOne



Performance Hints

In inner loops, access only locals instead
of data members

Sometimes tricky to see with presence of
iInner classes

JavaOne



Performance Hints

class MyClass {
FloatBuffer myBuf;
//
void doComputation() {
for (int i = 0; i < size; i++) {
// Avoid
myBuf .put (i, computeNextDatum()) ;

}
}
}

JavaOne



Performance Hints

class MyClass {
FloatBuffer myBuf;
//
void doComputation () {
// Better
FloatBuffer buf = myBuf;
for (int i = 0; i < size; i++) {
buf.put (i, computeNextDatum()) ;
}
}
}

JavaOne



Performance Hints

Avoid mixing use of direct and non-direct
buffers in applications

Compilers for the Java HotSpot VM currently
will not be able to inline accessors well

Other DKs for Java technology may do better

Problem we are taking very seriously and will
address in future release

JavaOne



Summary

J2SE™ 1.4 release; OpenGL, for Java™
Technology; and New 1I/O reach previously
unattainable performance levels for the Java
programming language

Can write high-performance 3D applications
In the Java programming language today

Portability, safety, and ease-of-development
of Java technology

Already fast; future releases will only be faster

JavaOne



Conclusion

Start writing 3D applications and games
In the Java programming language!

JavaOne



JavaOne



Sun's 2002 Worldwide Java Developer Conference’




